

Partial Task Shuffle First Strategy for Spark

Tianlei Zhou1, 2, a, Yuyang Wang1, 2, b
1School of computer science and technology, Chongqing University of Posts and Telecommunications,

Chongqing, 400065, China
2Chongqing Engineering Research Center of Mobile Internet Data Application, Chongqing, 400065, China

aztl_wangyi@163.com, b529504153@qq.com

Keywords: Big data, spark, shuffle, task

Abstract: Apache Spark is an in-memory distributed computing framework, which is more suitable
for iterative jobs than MapReduce. However, the shuffle process needs to synchronize tasks
between nodes, which may lead to waste the computing resources of the cluster and ultimately
reduce the computing performance of the cluster. This is an important reason to limit the
performance of Spark. In this paper, we proposes a Partial Task Shuffle First (PTSF) Strategy to
dynamically generate Shuffle Write tasks and perform Shuffle operations on partial completed tasks.
The strategy increases the parallel degrees of data calculation and transmission, lowering the peak
of the Shuffle stage, allowing the cluster to be more balanced in the course of the operation. Finally,
experiments show that the proposed strategy can improve Shuffle execution efficiency.

1. Introduction
Spark [1,2] solves the inefficiency of MapReduce [3] in dealing with iterative jobs through

memory computation, is 100 times faster than MapReduce, and has been widely used by companies
and organizations. For example, some shopping websites need to aggregated, analyze and mine the
log data of their users' behaviors, and finally provide data to support their various recommendation
systems and search systems. In this process, including ETL, SQL query analysis and machine
learning, Spark is gradually replacing MapReduce as its mainstream computing engine for big data
processing. In addition, Alibaba, Facebook, Tencent and other Internet companies have also applied
Spark to their multiple business platforms.

Resilient Distributed Datasets [4] (RDD) is Spark's core abstract data structure. An RDD is simply
a distributed collection of element. Resilient means that RDD allow data to be automatically switched
between memory and disk. Distributed means that each RDD is split into multiple partitions [5],
which may be computed on different nodes of the cluster. Spark provides two types of RDD
operations: Transformation and Action. Transformations are operations on RDDs that return a new
RDD, such as map and filter. Actions are operations that return a result to the driver program or write
it to storage, and kick off a computation, such as count and first. It should be noted that RDD can only
be created by reading input data or performing Action operations on existing RDDs. Therefore,
during the calculation process, RDD will gradually form a chain dependent structure. In this
chain-dependent structure, if the partition in the child RDD depends on each partition in the parent
RDD, this dependency is called a wide dependency. Wide dependencies will trigger shuffle, which is
a process of redistributing data across partitions (aka repartitioning) that may or may not cause
moving data across JVM processes or even over the wire between executors on separate machines.

The Shuffle operation involves disk and network I/O. As we all know, disk and network I/O take
much more time than in-memory computing, so the performance of the Shuffle directly affects the
efficiency of the entire program. Therefore, to optimize the Shuffle process and reduce the time spent
in the Shuffle is the key to improve the performance of the entire computing framework.

2019 4th International Conference on Automatic Control and Mechatronic Engineering (ACME 2019)

Published by CSP © 2019 the Authors 66

2. Shuffle Optimization
2.1. Shuffle Process

As a big data computing framework, Spark is not responsible for data storage and usually uses
HDFS as the input source for its tasks. In HDFS [6], the file is split into blocks and stored in the
DataNode. "Passing data is not as good as passing computation" is Spark's design philosophy, so
when performing jobs, after reading input data through HDFS to create RDD, computing tasks are
assigned to nodes where data blocks are located. As shown in Figure 1, solid line rounded corner box
is RDD, solid line square corner box is a partition of RDD, and dotted line box is Stage. After the job
is submitted, the input data is first read from HDFS and formatted as RDD (A, C, E), followed by
GroupBy operation on A, Map operation on C, and Union operation on E. Where the GroupBy
operation triggers a Shuffle.

Figure 1. The job execution process in spark.

Shuffle is the reorganization of data. Figure 2 shows the shuffle process. In Spark, it is divided into
two phases: Shuffle Write and Shuffle Read. In earlier versions, each Map task created R bucket
caches, R was the number of Reduce tasks. In the Shuffle Write stage, the Map task is first read to
output data. Then the Partitioner is used to calculate the location of each data partition. According to
the partition location, the data is written to the corresponding Bucket cache and finally the data
cached by the Bucket is written to the disk. In the Shuffle Read phase, the Reduce task uses
BlockStoreShuffleFetcher to get the data information, and then pulls the data through the
BlockManager. The pulled data is first put into the memory, and if the memory is not enough, it is put
into the disk. However, this method will generate M*R Block files. For example, when the number of
Map task is 128 in a node and the number of Reduce task is 128, the node will generate 16,384 Block
files. A large number of random I/O will exert great pressure on the file system and eventually
Reduce spark execution efficiency. Therefore, in later versions, Spark introduced a file merging
mechanism. Executor merges the data of Map tasks running on the same core, reducing the number of
files and reducing the pressure of random reading and writing.

Figure 2. The shuffle process in spark.

67

2.2. Problem Analysis
As described in the previous section, the second phase of the Shuffle process, the Shuffle Read

process, requires pulling data from all the nodes in the cluster. It should be noted that the data pull
operation of the Reduce task needs to wait for all Map tasks to complete before it starts. In other
words, the Shuffle Read process involves synchronizing the computing tasks of each node in the
cluster.

Figure 3. Task allocation of original spark

As shown in figure 3, each node performs different task jobs. Worker1 and Worker2 first create
RDD by reading input data, then perform Map and Filter calculations, and finally perform Shuffle
Write; while Worker3 and Worker4 only need to create RDD by reading the input dataset to perform
Shuffle Write. Therefore, before Worker1 and Worker2 are written to the Bucket, Worker3 and
Worker4 are idle pending due to the small number of computation tasks. It can be concluded from the
above analysis that in spark, computing process and data transmission process are processed serially,
which will lead to the waste of cluster resources. In addition, if Shuffle Read is performed
simultaneously after all nodes are synchronized, a lot of data transmission is concentrated at the same
time point, which will bring greater pressure on the network load. Therefore, properly adjusting the
time when the Reduce task pulls data can improve Shuffle efficiency.

2.3. Partial Task Shuffle First Strategy
In response to the above problems, this section proposes a Partial Task Shuffle First strategy.

Different from the original Shuffle process, a Map task does not perform a Shuffle Write immediately
after execution. Instead, it processes data of multiple Map tasks and achieves the effect of merging
Block files, and finally outputs a group of Block files. Since the intermediate data transmission does
not need to consume computing resources, once the partial data Shuffle Write is executed, the output
intermediate data is pushed to other nodes of the cluster, thereby increasing the parallelism between
data transmission and calculation.

First, we need to start the monitoring module of each Worker node in the computing cluster, which
is responsible for monitoring the running state of the task on its own node, and is used to predict the
time required for the completion of the Map task on this node and the time required by the data
Shuffle Write.

68

Table.1. Monitoring module acquires data content

Symbol description
𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 Input data size of the i-th Map task
𝑇𝑇𝑇𝑇𝑖𝑖 Execution time of the i-th Map task

𝑆𝑆𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖 Output data size of the i-th Map task
𝑇𝑇𝑇𝑇𝑘𝑘 Execution time of the k-th completed Shuffle Write task

𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑘𝑘 Input data size of the k-th completed Shuffle Write task
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 Executor Core Count
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 Executor Map Core Count

𝑆𝑆ℎ𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 Executor Shuffle Core Count
Second, PTSF needs to initialize the following data:
Un-shuffled Set. It is used to store the output result of the completed Map task, that is, the data set

without Shuffle Write. Executor puts the task output into the pending result set if it performs a Map
task. If a Shuffle Write task starts, it will read the collection and empty the collection. The initial state
is empty.

Map Set. The remaining tasks are predicted by the completed task information. In the initial state,
there are fewer completed Map tasks, and the prediction bias may be large. Therefore, it is necessary
to store the completed Map task operation information, which is used to dynamically adjust the
prediction result, reduce the error, and the initial state is empty.

Shuffled Set. Similar to the completed Map task collection. Stores the information of the
completed Shuffle Write task, and the initial state is empty.

We need to calculate the execution speed of the node Map task to predict the execution time
required by the Map task, as shown in equation 1.

𝑉𝑉𝑚𝑚𝑎𝑎𝑎𝑎 = 1
|𝛼𝛼|
∑

𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑇𝑇𝑇𝑇𝑖𝑖

𝑖𝑖∈𝛼𝛼
𝑖𝑖 (1)

In equation 1, 𝛼𝛼 is the Map Set. Similarly, the execution speed of the node Shuffle Write task can
be calculated, as shown in equation 2.

Vshuffle = 1
|β|
∑

SSiutputk
TSk

k∈β
k (2)

In equation 2,𝛽𝛽 is the Shuffled Set. Further, the execution time required for the unfinished Map
tasks can be predicted by Equation 3

𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =
∑ 𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑖𝑖∉𝛼𝛼
𝑖𝑖

𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚
 (3)

The time required to perform a Shuffle Write operation on the data output by the Map task can be
obtained by Equation 4

𝑇𝑇𝑠𝑠ℎ𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =
∑ 𝑆𝑆𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖
𝑖𝑖∈𝛼𝛼
𝑖𝑖 +𝜆𝜆×∑ 𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖−∑ 𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑘𝑘

𝑘𝑘∈𝛽𝛽
𝑘𝑘

𝑖𝑖∉𝛼𝛼
𝑖𝑖

𝑉𝑉𝑠𝑠ℎ𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢
 (4)

Where 𝜆𝜆 is the input-output conversion factor, which can be calculated by equation (5)

𝜆𝜆=
∑ 𝑆𝑆𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖
𝑖𝑖∈𝛼𝛼
𝑖𝑖

∑ 𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑖𝑖∈𝛼𝛼
𝑖𝑖

 (5)

Finally, we perform the shuffle process through the following algorithm.
Algorithm1: PTSF algorithm
Input: MapCore; ShuffleCore; Un-shuffled Set; Map Set; Shuffled Set
Output: Blocks
1: maps= List< Map>
2: while maps not empty do

69

3: if map in maps is finished then
4: maps.remove(map)
5: MapQueue.add(map,TMi, 𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)
6: unshuffleSet.add(𝑀𝑀𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖)
7: T𝑚𝑚𝑚𝑚𝑚𝑚_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟=compute(MapQueue)
8: T𝑠𝑠ℎ𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟=compute(ShuffleQueue)
9: if T𝑠𝑠ℎ𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟/T𝑚𝑚𝑚𝑚𝑚𝑚_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟>ShuffleCore/MapCore than
10: dataset=unshuffleSet
11: clear(unshuffleSet)
12: shuffleWrite(dataset)
13: ShuffleQueue.add(shuffleWrite, TSk, 𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑘𝑘)
14: else
15: waitOtherTask()
16: end if
17: end if
Obtain all the Map tasks on the node, and when one of the Map tasks is executed, record the

running information and output result information of the task. Then, the completed task is used to
predict the time that the incomplete Map task and the Shuffle Write task will be consumed, and finally
the computing resources are dynamically allocated for the two tasks. It should be noted that the initial
state of the Shuffle Write task set is empty, that is, there is no completed Shuffle Write task
information, so it is necessary to start extracting a small portion of the Map task output data as a
sample, and run a smaller Shuffle Write task instance. The execution effect of the instance is used as
the initial data for prediction.

3. Experiment
In order to verify the performance of PTSF, the cluster built in this paper uses 7 servers, one server

is the master node, and the other six servers are the worker nodes. Each server configuration is as
described in Table 2:

Table.2. Experiment Configurations
Parameters Values

CPU Intel Xeon/16Core 2.8Ghz
RAM 8GB
DISK 150G

OS CentOS 6.9
JDK JDK1.8.0_102

SCALA Scala-2.11.8
Hadoop Apache Hadoop 2.7.3
Spark Apache Spark 2.1.0

Experimental data set to select the SNAP (Stanford Network Analysis Project) provides four large
Network data set, take a PageRank algorithm in each data set and PageRank contains several rounds
of iteration, each iteration involves two Shuffle (Join and ReduceByKey) operation, and thus more
conducive to verify the result of the experiment.

Table.3. Experiment Dataset
Dataset Nodes Edges Description

Amazon0601 403394 3387388 Amazon product co-purchasing network from June
1 2003

wiki-Talk 2394385 5021410 Wikipedia talk (communication) network
soc-pokec-relationships 1632803 30622564 Pokec online social network

soc-LiveJournal1 4847571 68993773 LiveJournal online social network

70

Figure 4. Amazon0601 Figure 5. wiki-Talk

Figure 6. Soc-pokec-relationships Figure 7. Soc-LiveJournal1

First, we use PageRank iterations 10 to 40 times on these four datasets under the native Spark
platform and optimized platform. In the course of the experiment, in order to reduce the error, the
results of each experiment are the average of the results of multiple experiments. As can be seen from
the results shown in Figures 4 to 7, the job execution time is increasing because the number of
iterations is increased (the number of Shuffles is increased). On the other hand, under the four data
sets, the Shuffle efficiency has improved, which also reflects the applicability of the strategy in
different data scenarios.

PTSF can use the waiting time of node synchronization to exchange data to reduce the network
congestion when synchronizing Shuffle under the native policy. As the number of shuffles in
PageRank is more, it is not conducive to the analysis and comparison of network state. Therefore, the
word frequency statistical algorithm (WordCount) containing only a Shuffle operation was selected
in the second experiment, and 1G,2G and 4G data sets were used for verification respectively. The
experimental results are shown in figure 8.

Figure 8. Word Count

71

As shown in figure 8, PTSF has a certain improvement in execution efficiency compared with the
native policy under different data set sizes. In the calculation, further monitoring the network traffic
through the nload tool.

Figure 9. Network throughput of 4G Data

As shown in figure 9, when native Spark performs jobs, the load on the cluster network in the
beginning and end stages is low, while the load on the Shuffle phase is high. PTSF makes the network
load more balanced.

4. Conclusion
PTSF proposed in this paper can improve the parallelism of data calculation and network

transmission. It can also reduce the peak value of network transmission in the Shuffle phase by
utilizing the synchronous waiting period between nodes, so that the overall network load is balanced.
Experiments show that the strategy proposed in this paper can better improve the efficiency of
Shuffle execution. Further, in the heterogeneous Spark cluster, due to the differences in node
performance, slow nodes may slow down the overall progress of the job, which can also be continued
in the future.

References
[1] Zaharia M, Xin R S, Wendell P, et al. Apache Spark: a unified engine for big data processing [J].
Communications of the Acm, 2016, 59 (11):56-65.
[2] Apache Spark [EB/OL]. http://spark.apache.org/
[3] Dean J, Ghemawat S. MapReduce: A Flexible Data Processing Tool [J]. Communications of the
Acm, 2010, 53 (1):72-77.
[4] Zaharia M, Chowdhury M, Das T, et al. Resilient distributed datasets: a fault-tolerant
abstraction for in-memory cluster computing [C]// Usenix Conference on Networked Systems
Design & Implementation. 2012.
[5] Ramakrishnan S R, Swart G, Urmanov A. Balancing reducer skew in MapReduce workloads
using progressive sampling [C]// Acm Symposium on Cloud Computing. 2012.
[6] Shvachko K, Kuang H, Radia S, et al. The Hadoop Distributed File System [C]// IEEE
Symposium on Mass Storage Systems & Technologies. 2010.

72

	2.1. Shuffle Process
	2.2. Problem Analysis
	2.3. Partial Task Shuffle First Strategy

